quinta-feira, 30 de julho de 2015



                            
                                 Soluções





           DESAFIO 1


Tu TINHAS uma idade que chamaremos de x e hoje TEM uma idade que chamaremos de y.
Eu TENHO o dobro da idade que tu tinhas quando eu tinha a tua idade atual (o dobro de x) , ou seja, eu TENHO 2x anos.
ENTÃO:
Tu TINHAS x e agora tem y.
Eu TINHA y e agora tenho 2x.
Portanto temos que:
y-x = 2x-y
2y=3x
x=(2/3)*y
ENTÃO, substituindo o valor de x, temos:
Tu TINHAS (2/3)*y e agora tem y.Eu TINHA y e agora tenho (4/3)*y.
Agora preste atenção na segunda frase:
QUANDO TU TIVERES A MINHA IDADE, A SOMA DAS NOSSAS IDADES SERÁ DE 45 ANOS.
Tu tem y, e para ter a minha idade, que é (4/3)*y, deve-se somar a tua idade y com mais (1/3)*y.
Somando y + (1/3)*y você terá a minha idade, ou seja, você terá (4/3)*y.
Como somamos (1/3)*y à sua idade, devemos somar à minha também, ou seja:
Agora eu tenho (4/3)*y + (1/3)*y, logo eu tenho (5/3)*y.
A soma de nossas idades deve ser igual a 45 anos:
(4/3)*y + (5/3)*y=45
(9/3)*y=45
3y=45
y=15
No início descobrimos que x=(2/3)*y, portanto x=(2/3)*15, logo x=10.
FINALMENTE: QUAIS SÃO AS NOSSAS IDADES???
COMO DISSEMOS NO INÍCIO, A TUA IDADE ATUAL É y, OU SEJA, 15 ANOS.
E A MINHA IDADE É 2x, OU SEJA, 2.10, QUE É IGUAL A 20 ANOS.
PORTANTO AS IDADES SÃO 20 E 15 ANOS!!!
Aviso: diariamente recebemos e-mails de usuários dizendo que essa resposta está errada, pois somando as idades não obtemos 45. Porém, note que o enunciado não diz que a soma atual das idades é 45, mas sim que "Quando tu tiveres a minha idade, a soma das nossas idades será 45 anos", ou seja, quando o de 15 tiver 20, o de 20 já terá 25 (20+25=45).

DESAFIO 2

 A solução é a seguinte:
Chamaremos de y a idade da pessoa mais nova.
Chamaremos de x a idade da pessoa mais velha.
O problema diz que agora (atualmente) as idades estão na razão de 4 para 5. Então:
y/x = 4/5 (equação 1)
O problema diz que há 8 anos as idades estavam na razão de 8 para 11. Então:
(y-8)/(x-8) = 8/11 (equação 2)
Isolando y na equação 1:
y = 4x/5
Colocando esse valor de y na equação 2 temos:
((4x/5)-8)/(x-8) = 8/11
(4x/5)-8 = 8/11.(x-8)
Fazendo o mmc dos dois lados temos:
(4x-40) / 5 = (8x-64) / 11
11.(4x-40) = 5.(8x-64)
44x-440 = 40x-320
44x-40x = 440-320
4x = 120
x= 30
Portanto a idade da pessoa mais velha é 30 anos!!! 

DESAFIO 3

O PROBLEMA SE RESOLVE DA SEGUINTE MANEIRA:
São 7 pessoas, sendo que uma nunca pode ir num banco da frente.
Vamos chamar essa pessoa de João, por exemplo.
Então primeiro vamos calcular o número de maneiras de lotar o automóvel SEM o João, usando apenas as outras seis pessoas:
Como temos 6 pessoas e 5 lugares no carro então calculamos o arranjo de 6 elementos, tomados 5 a 5:
A6,5= 720
Agora vamos calcular o número de maneiras de lotar o automóvel COM o João.
Sabemos que o João não pode estar nos bancos da frente, portanto ele deve estar em um dos três bancos de trás.
Então fixamos o João em um dos lugares traseiros (então sobram 4 lugares no carro), e depois calculamos o número de maneiras de colocar as outras 6 pessoas nesses 4 lugares, ou seja, um arranjo de 6 elementos, tomados 4 a 4:
A6,4= 360
O João pode estar em qualquer um dos três bancos de trás, portanto devemos multiplicar esse resultado por 3:
3 x A6,4= 3 x 360 = 1080
O número total de maneiras de lotar o automóvel é a soma dos dois arranjos (COM João e SEM João).
Portanto número total é 720+1080 = 1800 maneiras!!! 

Podemos notar que a figura é parecida com um "A".
Temos 13 pontos no total. Portanto o total de combinações entre eles é:
C13,3 = 286
Porém, nós queremos apenas as que formam triângulos, então temos que subtrair todas as combinações que não formam triângulos, ou seja, as combinações em que os pontos são COLINEARES. Temos 3 situações onde isso acontece:
Na "perna esquerda" do "A", temos 6 pontos colineares que não podem ser combinados entre si, pois não formam triângulos.
Na "perna direita" do "A", temos a mesma situação.
E no meio temos 4 pontos colineares que também não podem ser combinados entre si.
Temos que subtrair essa 3 situações do total. Então o número de triângulos que podem ser formados é:
C13,3 - C6,3 - C6,3 - C4,3 = 286 - 20 - 20 - 4 = 242
Portanto podem ser formados 242 triângulos distintos!!!

DESAFIO 4


Vamos considerar que quando o homem entrou na primeira loja ele tinha N reais. Então o nosso objetivo é achar o valor de N.
O problema diz que em cada loja o homem gastou 1 real a mais do que a metade do que tinha ao entrar.
LOJA 1LOJA 2LOJA 3
O homem entrou com N.
O homem GASTOU:
(N/2)+1.
Portanto o homem FICOUcom:
N - ((N/2)+1)
= N-(N/2)-1
= (2N-N-2) / 2
(N-2)/2
O homem entrou com (N-2)/2
O homem GASTOU:
(N-2)/2 )/2 + 1 = (N-2)/4 + 1 = (N+2)/4
Portanto o homem FICOUcom:
(N-2)/2 - ((N+2)/4)
= (2N-4-N-2) / 4
(N-6)/4
O homem entrou com (N-6)/4
O homem GASTOU:
( (N-6)/4 )/2 + 1
= (N-6)/8 + 1
(N+2)/8

Portanto o homem FICOU com ZERO REAIS, porque o problema diz que ele gastou tudo o que tinha nas três lojas. Então concluímos que o dinheiro que ele ENTROU na loja 3 menos o dinheiro que ele GASTOU na loja 3 é igual a ZERO:
(N-6)/4 - ((N+2)/8) = 0
(2N-12-N-2) / 8 = 0
2N-12-N-2 = 0
N-14 = 0
N = 14
PORTANTO, QUANDO O HOMEM ENTROU NA PRIMEIRA LOJA ELE TINHA 14 REAIS !!!


DESAFIO 5


Solução alternativa enviada por Ilydio Pereira de Sá
Vamos representar através de um fluxo, o que ocorreu desde sua entrada na 1ª loja, até a saída na última e em, seguida, percorrer o fluxo de "trás para frente", aplicando operações inversas. Cabe lembrar que a quantia que tinha ao entrar em cada loja (que representarei por N1, N2 e N3) fica sempre dividida por 2 e, em seguida, subtraída de 1 real.

(N1)/2 - 1 (saiu da loja 1 com N2)
(N2)/2 - 1 (saiu da loja 2 com N3)
(N3)/2 - 1 (saiu da loja 3 com zero, já que gastou tudo o que possuía).

Aplicando operações inversas, teremos do fim para o início:
(0 + 1) x 2 = 2
(2 + 1) x 2 = 6
(6 + 1) X 2 = 14

Logo, possuía ao entrar na 1ª loja R$14,00.

                      DESAFIO 6


Suponhamos que estamos procurando o número X. Observe essas condições exigidas pelo problema:
X dividido por 2 dá resto 1.
X dividido por 3 dá resto 2.
e assim por diante até:
X dividido por 6 dá resto 5.
Então podemos notar que o resto dá sempre uma unidade a menos do que o divisor.
Isso significa que o número seguinte ao número X, ou seja, X+1será divisível por 2,3,4,5 e 6.
Bom...já que X+1 é divisível por esses cinco números, então o número X+1 pode ser igual a 4x5x6=120.

Portanto, se X+1 é igual a 120, o número X que estamos procurando é 119, que também é divisível por 7.

Nenhum comentário:

Postar um comentário